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We introduce a general technique to alter the properties of chaotic signals used with coupled chaotic
systems. The changes we introduce allow one to vary the synchronization properties of synchronized chaotic
circuits, synchronize chaotic systems that do not otherwise synchronize, vary the spectral properties of chaotic
signals, and produce a variety of chaotic signals from one chaotic circuit. The transformations we study could
potentially aid designers of synchronous chaotic circuits, as it is far easier to design new transformations than
to design new chaotic circuits.@S1063-651X~96!05411-6#

PACS number~s!: 05.45.1b

I. INTRODUCTION

While there has been much speculation on the use of cha-
otic systems for communications or other applications
@1–13#, there are really only a few standard chaotic systems
that have been used for examples. One may try to design
other chaotic systems, but for now designing chaotic sys-
tems, especially systems that may be built as circuits, is a
trial and error process. When one imposes some set of re-
strictions on the chaotic systems, such as ease of reproduc-
ibility, synchronization characteristics, or spectral properties,
the problem of designing chaotic systems becomes even
more difficult.

We will show in this paper that one may greatly modify
the properties of existing coupled chaotic systems by trans-
forming the original drive signal and one or more other cha-
otic signals from the existing drive system to create a new
scalar drive signal. We then undo the transformation at the
receiver using a procedure we callsynchronous substitution
to recover the original drive signal. We show below how
synchronous substitution allows one to create a variety of
chaotic signals from one source, tailor the Lyapunov expo-
nents of response systems~one may even synchronize un-
stable subsystems!, change the spectral properties of chaotic
signals, and multiplex chaotic signals from different sources
@13#.

II. CHAOTIC SYNCHRONIZATION

We use the idea of chaotic synchronization@1–3,6,14,15#
to reproduce the signals from a drive system at some re-
sponse system. One may start with adrive ~transmitter! sys-
tem such asẋ5 f (x,y,z), ẏ5g(x,y,z), ż5h(x,y,z) and di-
vide it into component subsystems. The exact division may
be done in many ways.

To build a receiver~or response! system, we reproduce
one or both of the subsystems of the drive system and drive
them with a signal from the drive system. There are many
ways to apply the signal. For example, we could use they
variable to drive the response systemẋ85 f (x8,y8,z8),
ẏ85g(x8,y,z8), ẏ85h(x8,y8,z8), where the primed vari-
ables are response system variables only and we have ap-
plied the drive only in the ‘‘y’’ response subsystem. We
could use different combinations of drive signals and sub-

systems; for example, we could replace they8 variable with
the drive signaly everywhere thaty8 appears in the response
system, or we could use a diffusive coupling@15,16#. It has
been shown@1,2# that if all of the Lyapunov exponents in the
response system are negative, theny82y→0 ast→`.

III. TRANSFORMATION AND SYNCHRONOUS
SUBSTITUTION

Rather than simply sending a single signal such asy in
the examples above, we may send a transformed version ofy
that may depend on other dynamical variables in the drive
system. An example of such a transformation isw5y1x,
where we callw the ‘‘transmitted signal.’’ If the response
system is synchronized to the drive system, thenx85x, so
we may construct the inverse transformationỹ5w2x by
using x8 in place of x, a procedure we callsynchronous
substitution. In this case,ỹ5y ~within some small error!.

Superficially, the transformation procedure we use looks
the same as the work of Kocarev and Parlitz or Penget al.
@17,18#. There are important differences in the physics be-
tween our work and previous work. In the Kocarev and Par-
litz work, they do a change of variables on the drive and
response systems by defining a new driving variables which
is a function of the old variables. This change of variables
allows Kocarev and Parlitz to find new decompositions for
an existing chaotic system. Some of these new decomposi-
tions will be stable. The driving variable will be different,
depending on the particular decomposition used. We used a
simple version of this idea in our original work on chaotic
synchronization@1,2,14#, in which we used a hysteretic cir-
cuit. We found that the circuit response system was not
stable when driven with our original choice for driving vari-
able. We had to define a new driving variable which was a
function of the original circuit variables in order to synchro-
nize the response to the drive.

In our approach, we do not use a change of variables. We
do define a new variablew which is a function of the original
driving variable and other variables. The new variablew is
transmitted to the response system but is not used to drive
the response system. We recover the original drive variable
by inverting the transformation that generatedw. We invert
the transformation using only variables from the synchro-
nized response system, a process that we call synchronous
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substitution. In inverting the transformation, we create a
feedback loop in the response system, so that the new re-
sponse system is no longer identical to the drive system. One
may decide which variables one would like to feed back into
the response system, for example, to improve stability, and
then design the transformations appropriately. In the Ko-
carev and Parlitz technique, the response system is still iden-
tical to the drive system; there is no feedback involving the
response variables.

One major difference between our synchronous substitu-
tion and the change of variables technique of Kocarev and
Parlitz is that our transformations are not limited to recom-
binations of the existing drive system variables. In@19#, the
transformation included a filter. Any transformation will
work, including transformations that introduce new vari-
ables, as long as the transformation is invertible and the re-
sponse system~including the inverse transformation! is
stable. If we consider transformations such as filtering@19#,
we see the synchronous substitution technique may be used
to alter the spectrum of the transmitted chaotic signalw.

Below we first show a numerical example involving the
Lorenz equations before giving a more general description of
synchronous substitution. Afterwards we show circuit ex-
amples of synchronous substitution.

IV. NUMERICAL EXAMPLE

Our first simple example illustrates the technique using
the Lorenz equations. The drive system is

dx

dt
510~y2x!, ~1!

dy

dt
52xz160x2y, ~2!

dz

dt
5xy22.667z, ~3!

w5y1x. ~4!

The response system is

ỹ5w2x8, ~5!

dx8

dt
510~ ỹ2x8!, ~6!

dz8

dt
5x8ỹ22.667z8. ~7!

The stability of the synchronous state is determined from the
conditional Lyapunov exponents of the response system~5!–
~7!. They are found from the Jacobian of the response system
evaluated on the synchronous state,

F ] ẋ8

]x8
] ż8

]x8

] ẋ8

]z8
] ż8

]z8

G
sync state

5F 220
y2x

0
22.667G . ~8!

Since the Jacobian is lower triangular, the conditional
Lyapunov exponents are simply the diagonal elements,220
and 22.667, indicating that the response system is stable.
Figure 1 shows the convergence ofy8 to y when the drive
and response systems are started with different initial condi-
tions.

V. GENERAL FORMULATION
OF SYNCHRONOUS SUBSTITUTION

We can generalize this combined use of transformation
and synchronous substitutions as follows. LetT be a
transformation from Rn→R: w5T(x,y,z, . . . ), where
~x,y,z, . . . !PRn. Suppose the response system is near syn-
chronization. We send the transmitted signalw which may
be a combination of several drive system signals, including
the original drive signaly. In order to synchronize the re-
sponse system, we need an estimate for the value ofy given
only the signalw. By the implicit function theorem, if
DyTÞ0, then there exists an inverse transformation which
we denote byT y

21 such thaty5T y
21(w,x,z, . . . ). At the

response we only knoww. But we can get a good estimate of
y by using the response variablesx8, z8, etc. This use of
response variables in place of drive variables is what we term
synchronous substitution. We writeỹ5T y

21(w,x8,z8, . . . ).
We can now putỹ into the response where we would like to
apply the drive variabley.

The question that remains is that of stability. Using the
above formulation we can write the general form of the
variational problem for the response stability. If the vector
field of the response isF(x8,y8,z8, . . . ,ỹ), then the varia-
tional equations become

ddr

dt
5@D ~x8,y8,z8, . . . !Fusync state

1D ỹFD ~x8,y8,z8, . . . !Ty
21usync state#dr , ~9!

where dr5(x82x,y82y,z82z, . . . ). The first term in
brackets is the usual Jacobian that results in the standard
variational problem. The second term depends on the trans-
formation and the synchronous substitution. The latter can

FIG. 1. Signaly from the drive system~solid line! and response
signaly8 from the Lorenz system of Eqs.~3!–~10! showing that the
response system converges to the drive system when the driving
signal isw5y1x.
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cause changes in stability and allow more interesting and
varied synchronization schemes to be developed. Note that
the second term will have a column of zeroes in they8 po-
sition.

Obviously this approach is not limited to using the vari-
abley8 and can be applied in situations where more than one
signal, sayw1 andw2, are transmitted.

VI. CIRCUIT EXAMPLES

We demonstrated synchronous substitution in a piecewise
linear Rossler~PLR! circuit @20#. The circuit is described by

dx

dt
52a~rx1by1z!, ~10!

dy

dt
52a~2x2ay1gy!, ~11!

dz

dt
52a@z2g~x!#, ~12!

g~x!5H 0 if x,3

15~x23! if x>3 ,
~13!

w5T~x,y,z!, ~14!

where a5104, a50.12, b51.0, b50.5, g50.02, and
r50.05. They term in Eq.~11! is divided into two parts to
make the correspondence with the response system of Eq.
~17! more obvious. The synchronized response circuit is de-
scribed by

ỹ5Ty
21~w,x8,y,z8!, ~15!

dx8

dt
52a~rx81b ỹ1z8!, ~16!

dy8

dt
52a~2x82aỹ1gy8!, ~17!

dz8

dt
52a@z82g~x8!#. ~18!

The termgy8 in Eq. ~17! is necessary to stabilize the opera-
tional amplifier integrator used in the above circuit. We used
the response circuit of Eqs.~14!–~17! with two different ver-
sions of T. For our first circuit, we usedw5y2x and
ỹ5w1x8. The plot of Fig. 2 showsy8 vs y from the circuit
for the preceding transformation. The largest Lyapunov ex-
ponent for the response circuit is2196 s21 ~calculated nu-
merically from the equations of motion by the method of
Eckmann and Ruelle@21#!.

Nonlinear transformations are also possible with synchro-
nous substitution. The transformationw52y/(x14.2) and
ỹ52w(x814.2) also resulted in synchronization in the cir-
cuit. The largest Lyapunov exponent of the response circuit
for this second transformation was calculated to be2651
s21.

VII. DRIVING UNSTABLE SUBSYSTEMS

Synchronous substitution may also be used in control the
stability of the response system and even synchronize re-
sponse systems that normally do not synchronize. We dem-
onstrate this control of stability with the drive circuit of Eqs.
~10!–~14! and the response circuit described by

w5z2kx, ~19!

z̃5w1kx8, ~20!

dx8

dt
5~rx81by81 z̃!, ~21!

dy8

dt
52a~2x82ry8!, ~22!

wherer5a2g50.12 and the other symbols are defined with
Eqs.~10!–~14!.

The stability of the response system described by Eqs.
~19!–~22! is determined by the conditional Lyapunov expo-
nents of thex82y8 response subsystem. Since this sub-
system is linear, the exponents can be computed analytically;
they are found from the eigenvalues of the sub-Jacobian~set-
ting a51 for this calculation!

F2r2k
1

2b
r G . ~228!

For k50, r50.12,b50.5, andr50.05 the eigenvalues are
0.03560.702i , and therefore the subsystem is unstable—
chaotic synchronization is not possible~which is a known
result for the Rosslerx2y subsystem@1,2#.

The stability of the response system varies forkÞ0. Fig-
ure 3 shows the maximum real part of the eigenvalues of this
matrix ~mmax! as a function ofk ~with other parameters given
above!. The eigenvalues cross into the left half plane when

FIG. 2. y8 signal from the response system vsy signal from the
drive signal for two piecewise linear Rossler~PLR! circuits when
the driving signal isw5y2x and the reconstructed driving signal
ỹ5st1x8.
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k5r2r50.07. ‘‘Optimum’’ synchronization ~minimum
mmax! occurs when the eigenvalues are degenerate atk5
2(r1r )12Ab'1.244.

A circuit was built to simulate Eqs.~19!–~22! ~with
a5104!. For k50 ~corresponding toz driving only!, no syn-
chronization of the drive and response circuits was seen~as
discussed above, the response system is unstable fork50!.
Synchronization was seen fork51 ~the system is stable for
k51 in the theoretical example above!. The response system
was also seen to synchronize fork50.15 and 2.20~well
within the region of stability shown in Fig. 3!, while no
synchronization was seen fork50.075, just on the boundary
of stability shown in Fig. 3. The drive and response circuits
did not synchronize fork52.67, but, as can be seen in Fig. 3,
mmax for k52.67 is just below 0, so the response circuit may
be especially sensitive to noise and parameter mismatch.

One may stabilize other normally unstable subsystems;
we drove ay-z subsystem of the PLR circuit of Eqs.~8!–
~14! with w5x1ky andx̃5w2ky8. The response system is
unstable forx driving @1,2#—the numerically determined
largest Lyapunov exponent for the response system is 1100
s21. The circuits did synchronize whenk51, for which the
largest Lyapunov exponent was28899 s21. The response
circuit could also be set to have neutral stability; the largest
Lyapunov exponent for the response equations was 0 for
k50.11.

VIII. SIGNALS FROM MULTIPLE SYSTEMS

Note that nothing in the definition of the transformationT
requires that all signals come from the same dynamical sys-
tem. For example, we could use a transformationT which
combines signals from different dynamical systems as a way
to multiplex different chaotic signals or to use one chaotic
signal to change the spectral properties of another through a
nonlinear transformation. Tsimring and Sushchick@13# have
numerically demonstrated a simple version of chaotic multi-
plexing by adding two chaotic signals. We have demon-
strated a similar process both numerically and in circuits.

We have combined signals from two PLR circuits. The
pair of driving circuits is described by Eqs.~10!–~14! above.
The response circuits were driven by a diffusive coupling
@15,16# to allow more control over the stability of the re-
sponse system. The response circuits were described by

w5y11y2 , ~23!

ỹ15w2y28 , ỹ25w2y18 , ~24!

i51,2, ~25!

dxi8

dt
52a~rxi81byi81zi8!, ~26!

dyi8

dt
52a@2xi82ryi82c~ ỹi2yi8!#, ~27!

dzi8

dt
52a@zi82g~xi8!#, ~28!

g~xi8!5H 0 if xi8,3

15~xi823! if xi8>3,
~29!

wherea5104, r50.12,b51.0,b50.5, r50.05, andc50.5.
When the response system of Eqs.~23!–~29! is integrated
numerically,y18 is seen to synchronize withy1, andy28 syn-
chronizes withy2. The largest conditional Lyapunov expo-
nent @2# for the six-dimensional response system is2140
s21, compared with a largest conditional Lyapunov exponent
of 22252 s21 for a single driven PLR response system. For
identical systems, the initial conditions determine whether
response system 1 synchronizes with drive system 1 or 2; in

FIG. 3. Plot of mmax5max$Re$l1!,Re~l2!% versus k for the
piecewise linear Rossler response system of Eqs.~19!–~21!.

FIG. 4. ~a! y1 signal from a PLR circuit described by Eqs.~10!–
~13!. ~b! Difference betweeny signals in drive and response circuits
(d5y12y18) when signals from two PLR circuits are added to to-
gether, transmitted, and separated by synchronous substitution be-
fore driving synchronized response systems as in Eqs.~23!–~29!.
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building actual circuits, response system 1 is most closely
matched to drive system 1, and the same for systems 2.

Noise free numerical simulations do not reveal an accu-
rate picture of the system of Eqs.~23!–~29!, however. While
the global conditional Lyapunov exponents are less than
zero, there are regions on the response system attractor
where a conditional Lyapunov exponent is greater than zero.
When circuits corresponding to Eqs.~23!–~29! were driven,
bursting was seen instead of perfect synchronization. Figure
4~a! shows a time series of the signaly1 from the drive
circuit, while Fig. 4~b! shows d5y12y18 . The drive and
response systems are close to synchronization, but local re-
gions where a conditional Lyapunov exponent is greater than
zero cause bursting away from synchronization. Tsimring
and Sushchick@13# see the same local instabilities that we
have seen here. The local instabilities are related to the fact
that the two response systems are coupled to each other. We
were also able to observe synchronization in numerical ex-
periments when one of the drive circuits was a PLR circuit
and the other circuit was a four-dimensional circuit described

in @5#, but local instabilities still caused bursting in circuit
experiments.

IX. CONCLUSIONS

The use of transformations that may be undone by syn-
chronous substitution will be a useful tool in the application
of chaos in fields such as communication. If one desires to
send many different chaotic signals to many different users,
one could use signal transformation by synchronous substi-
tution. It is easier to design new synchronous transformations
than it is to design new chaotic circuits, so one may engineer
whole sets of chaotic signals with some desired properties.
The combination of signals from different chaotic systems,
which may be undone by synchronous substitution, has been
proposed as a method to multiplex many chaotic signals to-
gether@13#, and also offers a way to alter the spectral prop-
erties of chaotic signals; unfortunately, the presence of local
instabilities in the response system currently makes this
method impractical.
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